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Abstract. As the number of published scienti�c papers grows everyday,
there is also an increasing necessity for automated named entity recog-
nition (NER) systems capable of identifying relevant entities mentioned
in a given text, such as chemical entities. Since high precision values
are crucial to deliver useful results, we developed a NER method, Iden-
tifying Chemical Entities (ICE), which was tuned for precision. Thus,
ICE achieved the second highest precision value in the BioCreative IV
CHEMDNER task, but with signi�cant low recall values. However, this
paper shows how the use of simple lexical features was able to improve
the recall of ICE while maintaining high levels of precision. Using a se-
lection of the best features tested, ICE obtained a best recall of 27.2%
for a precision of 92.4%.
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1 Introduction

As the number of published scienti�c papers grows everyday, there is also an
increasing necessity for automated named entity recognition (NER) systems ca-
pable of identifying relevant entities mentioned in a given text. The BioCreative
challenge is a community e�ort to evaluate text mining and information extrac-
tion systems applied to the biological domain. One of the tasks proposed for the
fourth edition of this competition consisted in the detection of mentions of chemi-
cal compounds and drugs in MEDLINE titles and abstracts (CHEMDNER task)
[1]. The chemical entities to identify were those that can be linked to a chemical
structure. This task was divided in two subtasks: The �rst, Chemical Document
Indexing (CDI), expected an ordered list of unique chemical entities referenced
in given text. The second subtask, Chemical Entity Mention recognition (CEM),
expected the exact position of each chemical entity mentioned in the text. The
task organizers also provided a training corpus composed by 10,000 MEDLINE
abstracts that were annotated manually by domain experts. The speci�c rules
used by the annotators and the criteria used for choosing the MEDLINE entries
were de�ned by the organization and released with the corpus.
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To participate in BioCreative IV, we started by adapting our method [2]
based on Conditional Random Fields (CRF) classi�ers trained with the CHEMD-
NER corpus. Our system trained one classi�er for each type of entity annotated
in the corpus. The �nal con�dence score of each token classi�ed as a chemical
entity by at least one classi�er was calculated by averaging the three best clas-
si�er scores. The identi�ed entities were validated by resolving each chemical
entity recognized to the ChEBI ontology and by calculating the semantic simi-
larity between other ChEBI entities detected on the same text. The resolution
and similarity method enabled us to �lter most false positives and achieve the
second highest precision value on both subtasks [3]. However, the set of features
used to train the classi�ers was relatively small comparing with other CRF based
approaches that participated in BioCreative also, which use more general and
domain speci�c features [4, 5].

In this paper, we present a new version of our system (ICE) that achieved sig-
ni�cantly better results using more lexical features derived from the word tokens.
The rest of this paper is organized as follows: Section 2 presents an overview on
the BioCreative 2013 competition which we used to evaluate our system, Sec-
tion 3 (Methods) describes the approach we used for the competition and how
we improved it since then, Section 4 (Results) compares the e�ect of di�erent
features on the precision and recall values using 3-fold cross-validation on the
CHEMDNER corpus, and �nally on Section 5 we express our main conclusions.

2 BioCreative 2013 - CHEMDNER Task

2.1 CHEMDNER Corpus

The CHEMDNER corpus consists in 10,000 MEDLINE titles and abstracts and
was originally partitioned randomly in three sets: training, development and test.
The chosen articles were sampled from a list of articles published in 2013 by the
top 100 journals of a list of categories related to the chemistry �eld. These articles
were manually annotated according to the guidelines, by a team of curators with
background in chemistry. Each annotation consisted in the article identi�er, type
of text (title or abstract), start and end indices, the text string and the type
of the CEM which could be one of the following: trivial, formula, systematic,
abbreviation, family and multiple. There was no limit for the number of words
that could refer to a CEM but due to the annotation format, the sequence of
words had to be continuous. There was a total of 59,004 annotations on the
training and development sets, which consisted in 7,000 documents.

2.2 CEM and CDI Subtasks

There were two types of predictions the participants could submit for the CHEMD-
NER task: a ranked list of unique chemical entities described on each document
(CDI task) and the start and end indices of each chemical entity mentioned on
each document (CEM task). Each list should be ordered by how con�dent the



system is that each prediction is a chemical entity. Using the CEM predictions,
it was possible to generate results for the CDI subtask, by excluding multiple
mentions of the same entity in a text.

A gold standard for both subtasks was included with the corpus, which could
be used to calculate precision and recall of the results, with the evaluation script
released by the organization. Each team was allowed to submit up to �ve di�erent
runs for each subtask.

3 Methods

3.1 Submission to BioCreative 2013

Our method uses Conditional Random Fields (CRFs) for building probabilistic
models based on training datasets. We used the MALLET [6] implementation
of CRFs, adapted to also output the probability of the most probable sequence.
This probability was used as a con�dence score for each prediction, making it
possible to �lter predictions with low con�dence.

To train models and classify new text, it is necessary to tokenize the text and
generate features from word tokens. Then, the corresponding label is added to
the feature list. This label could be "Not Chemical", "Single", "Start", "Middle"
or "End", to include chemical entities composed by more than one token. We
have used a speci�cally adapted word tokenizer for chemical text adapted from an
open source project [7]. Four features were being extracted from each word token
by our system: Stem, Pre�x and su�x (size 3) and a boolean which indicates
if the token contains a number (Has number). We merged the training and
development sets of the CHEMDNER corpus into one training set and generated
one dataset for each type of CEM. With this method we expected to identify
more correct chemical entities since we were including the results of classi�ers
focused on just one type of CEM. The con�dence score used when more than
one of the classi�ers identi�ed the same CEM was the average of the three best
con�dence scores. This system was then evaluated with 3-fold cross-validation.

With the terms identi�ed as chemical entities, we employed an adaptation
of FiGO, a lexical similarity method [8], to perform the search for the most
likely ChEBI terms. Then, we were able to calculate the Gentleman's simUI [9]
semantic similarity measure for each pair of entities identi�ed in the text and
successfully mapped to the ChEBI ontology. We used the maximum semantic
similarity value for each entity as a feature for �ltering and ranking. This value
has shown to be crucial to achieve high precision results [10].

Since each team could submit up to �ve runs for each subtask, we generated
three runs to achieve our best F-measure, precision and recall, based on the cross-
validation results we obtained on the training set. For the other two runs, we
�ltered the predictions by semantic similarity only. The best results we obtained
were with the run we submitted for best precision (run 2), achieving the second
highest precision value in the competition. For this run, we excluded results
with the classi�er con�dence score and the semantic similarity measure lower



than 0.8. We now focused on keeping the precision of our system at high values,
while improving the recall and F-measure.

3.2 New Features

After implementing thirteen new features, we studied the e�ect of adding one
new feature at a time, while always keeping the four original features constant.
These new features are based on orthographic and morphological properties of
the words used to represent the entity, inspired by other CRF-based chemical
NER systems [4, 5, 11�13]. We integrated the following features:
Pre�x and Su�x sizes 1, 2 and 4: The �rst and last n characters of a word

token.
Greek symbol: Boolean that indicates if the token contains greek symbols.
Non-alphanumeric character: Boolean that indicates if the token contains

non-alphanumeric symbols.
Case pattern: "Lower" if all characters are lower case, "Upper" if all characters

are upper case, "Title" if only the �rst character is upper case and "Mixed"
if none of the others apply.

Word shape: Normalized form of the token by replacing every number with
'0', every letter with 'A' or 'a' and every other character with 'x'.

Simple word shape: Simpli�ed version of the word shape feature where con-
secutive symbols of the same kind are merged.

Periodic Table element: Boolean that indicates if the token matches a peri-
odic table symbols or name.

Amino acid: Boolean that indicates if the token matches a 3 letter code amino
acids.

For example, for the sentence fragment "Cells exposed to α-MeDA showed an
increase in intracellular glutathione (GSH) levels", the list of tokens obtained by
the tokenizer and some possible features are shown on Table 1.

After applying the same methods described on Section 3.1 for each new
feature, we were able to compare the e�ect of each one on the results. Then,
we selected the features that achieved a higher precision, recall and F-measure,
creating three sets of features for each metric and a fourth set with all the
features tested.

4 Results

4.1 BioCreative 2013

Using 3-fold cross-validation on the training and development sets, we obtained
the results presented in Table 2. The �rst three runs were aimed at achieving a
high F-measure, precision and recall, respectively. On runs 4 and 5 we �ltered
only by semantic similarity. We used as reference the results of run 2 since
the precision value obtained with the test set was the second highest in the
CHEMDNER task. Our objective was to improve recall and F-measure values
with minimal e�ect on the precision.



Table 1. Example of a sequence of some the new features, and the corresponding label,
derived from a sentence fragment (PMID 23194825).

Token Pre�x 4 Su�x 4 Case pattern Word shape Label

Cells Cell ells titlecase Aaaaa Not Chemical
exposed expo osed lowercase aaaaaaa Not Chemical

to to to lowercase aa Not Chemical
α-MeDA α-Me MeDA mixed xxAaAA Chemical
showed show owed lowercase aaaaaa Not Chemical
an an an lowercase aa Not Chemical

increase incr ease lowercase aaaaaaaa Not Chemical
in in in lowercase aa Not Chemical

intracellular intr ular lowercase aaaaaaaaaaaaa Not Chemical
glutathione glut ione lowercase aaaaaaaaaaa Chemical

( ( ( - x Not Chemical
GSH GSH GSH uppercase AAA Chemical
) ) ) - x Not Chemical

levels leve vels lowercase aaaaaa Not Chemical

Table 2. Precision, Recall and F-measure estimates for each run submitted to BioCre-
ative 2013, obtained with cross-validation on the training and development dataset for
the CDI and CEM subtasks.

CDI CEM
P R F1 P R F1

Run 1 84.8% 71.2% 77.4% 87.3% 70.2% 77.8%
Run 2 95.0% 6.5% 12.2% 95.0% 6.0% 11.1%
Run 3 52.1% 80.4% 63.3% 57.1% 76.6% 65.4%
Run 4 87.9% 22.7% 36.1% 89.7% 21.2% 34.3%
Run 5 87.9% 22.7% 36.1% 79.9% 22.6% 35.3%

4.2 New Features

The precision, recall and F-measure values obtained using our four original fea-
tures plus one new one are presented in Table 4.2 For each metric, we added a
shaded column which compares that value with the corresponding one on Table
2, for the run with best precision.

The features that returned the best recall and F-measure were the simple
word shape and pre�x and su�x with size=2. Using pre�x and su�x with size=1
and the alphanumeric boolean decreased our precision the most, without improv-
ing the other metrics as much as other features. The periodic table feature, which
was one of our two domain-speci�c features, achieved a recall value of 16.4%,
while maintaining the precision at 94%. Our other domain-speci�c feature, amino
acid, achieved our highest precision in this work. The general e�ect of using �ve
features instead of the original four was a decrease in precision by 0.8%-4.5%
and increase in recall and F-measure by 0.4%-19.5%.



For each subtask, we performed another cross-validation run with the original
four features to use as baseline values. We created three feature sets composed
by the original features we used for BioCreative and the features that improved
precision, recall or F-measure on any subtask, compared to the baseline. The
three feature sets created were:

Best precision: Stem, Pre�x/su�x 3, Has number, Pre�x/su�x 4, Has greek
symbol, Has periodic table element, Has amino acid.

Best recall: Stem, Pre�x/su�x 3, Has number, Pre�x/su�x 1, Pre�x/su�x 2,
Has greek symbol, Has periodic table element, Case pattern, Word shape,
Simple word shape.

Best F-measure: Stem, Pre�x/su�x 3, Has number, Pre�x/su�x 1, Pre�x/su�x
2, Has greek symbol, Has periodic table element, Has amino acid, Case pat-
tern, Word shape, Simple word shape.

The results obtained with these sets are presented in Table 4.2 Although there
was a decrease in precision in every case, the di�erence in recall and F-measure
values was always much higher. The feature set with best F-measure was able
to improve the recall by 21.0% while taking only 3.2% of the precision.

To determine the statistical signi�cance of the improvement between the ex-
panded feature set and the original, we ran a bootstrap resampling simulation
similar to the BioCreative II gene mention task [14] and BioCreative CHEMD-
NER task evaluations. We picked 1000 PMIDs from the train and development
sets and computed the recall and F-measure for this subset of documents. Then
we repeated this process 10,000 times, and estimated the average recall and F-
measure, and respective standard deviation for each feature set. With the original
features, the average recall was 8.00% (SD=0.53%) and the average F-measure
was 14.74% (SD=0.90%) while using the expanded feature set, the average recall
was 27.20% (SD=0.92%) and the average F-measure was 42.02% (SD=1.13%).

Table 3. Precision, Recall and F-measure estimates for each new features used with
the original set, obtained with cross-validation on the training and development dataset
for the CDI subtask.

CDI CEM
Feature set P ∆P R ∆R F1 ∆F1 P ∆P R ∆R F1 ∆F1

Pre�x/su�x 1 91.0% -4.0% 14.0% +7.5% 24.3% +12.1% 92.4% -2.6% 13.4% +7.4% 23.4% +12.3%
Pre�x/su�x 2 92.4% -2.6% 19.1% +12.6% 31.6% +19.4% 93.5% -1.5% 18.3% +12.3% 30.6% +19.5%
Pre�x/su�x 4 93.3% -1.7% 6.9% +0.4% 12.9% +0.7% 94.2% -0.8% 6.6% +0.6% 12.2% +1.1%
Greek letter 93.4% -1.6% 12.0% +5.5% 21.2% +9.0% 94.2% -0.8% 11.8% +5.8% 20.9% +9.8%
Periodic table 94.0% -1.0% 16.3% +9.8% 27.8% +15.6% 94.7% -0.3% 16.4% +10.4% 28.0% +16.9%
Amino acid 95.0% 0.0% 9.0% +2.5% 16.4% +4.2% 95.1% +0.1% 8.7% +2.7% 16.0% +4.9%
Alphanumeric 90.4% -4.6% 5.3% -1.2% 10.0% -2.2% 92.0% -3.0% 4.4% -1.6% 8.4% -2.7%
Case pattern 93.0% -2.0% 15.7% +9.2% 26.9% +14.7% 93.5% -1.5% 14.9% +8.9% 25.6% +14.5%
Word shape 93.9% -1.1% 11.8% +5.3% 20.9% +8.7% 93.3% -1.7% 12.7% +6.7% 22.4% +11.3%
Simple word shape 92.2% -2.8% 17.1% +10.6% 28.9% +16.7% 92.4% -2.6% 16.9% +10.9% 28.7% +17.6%



Table 4. Precision, Recall and F-measure estimates for each feature set used with the
original set, obtained with cross-validation on the training and development dataset
for the CDI and CEM subtasks

CDI CEM
Feature set P ∆P R ∆R F1 ∆F1 P ∆P R ∆R F1 ∆F1

Precision 93.7% -1.3% 15.4% +8.9% 26.5% +14.3% 94.1% -0.9% 15.0% +9.0% 25.9% +14.8%
Recall 91.5% -3.5% 24.7% +18.2% 38.9% +26.7% 92.0% -3.0% 23.9% +17.9% 37.9% +26.8%
F-measure 91.7% -3.3% 28.3% +21.8% 43.2% +31.0% 92.3% -2.7% 28.0% +22.0% 43.0% +31.9%
All features 91.5% -3.5% 24.5% +18.0% 38.7% +26.5% 93.0% -2.0% 24.2% +18.2% 38.4% +27.3%

5 Conclusion

Our participation in the CHEMDNER task of BioCreative 2013 achieved high
precision values for both subtasks, but at the expense of a low recall. This
manuscript shows how ICE improved its recall and F-measure maintaining the
same levels of precision, by using a more comprehensive feature set. The e�ect
of adding each new feature to ICE was evaluated by cross-validation on the
CHEMDNER corpus. We then evaluated feature sets composed by the features
that achieved the best precision, recall and F-measure, using the same method.

Individually, the features that were speci�c to chemical compounds achieved
the best balance between precision and recall. Adding only the pre�xes and
su�xes with size 2, we were able to increase the recall and F-measure by 12.3%
and 19.5%, while decreasing the precision by 1.5%. Using a combination of the
features that achieved the best results individually, we were able to increase
the recall and F-measure by 21.2% and 31.0% respectively while decreasing the
precision by 2.6% (Table 4.2).

Considering the run that achieved the highest precision in the o�cial BioCre-
ative results for the CDI task, our precision is 6.9% lower, but the recall and
F-measure are 10.9% and 13.9% higher, respectively. Considering the run with
best precision in the CEM task, our precision is 5.7% lower, but the recall and
F-measure are 9.3% and 11.8% higher. Our precision values would be the third
and sixth highest in the CDI and CEM subtasks, respectively. However, notice
that the results presented here were not obtained with CHEMDNER test set,
and for the competition, using the o�cial test set, our results were higher than
the cross-validation estimates we obtained.

In the future we intend to use more domain-speci�c features, and �lter pre-
dictions with a more powerful semantic similarity measure [15].
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